FAST RESPONSE, TRANSIENT FREE
REACTIVE POWER COMPENSATION SYSTEMS

EQUALIZER:
A real time transient free system, used to compensate extremely rapid loads within one cycle (typically 5-20 mSec).

ACTIVAR:
A fast transient free system, used to compensate any load within 3-4 seconds.

TYPES AVAILABLE:
- **Basic Systems:** Include iron core reactors to limit the inrush current
- **Detuned Systems:** Include iron core reactors that detune the network to prevent resonance and absorb up to 50% of the 5th harmonic
- **Tuned Systems:** Individually designed to absorb the 5th and 7th harmonics.

ADVANTAGES

EQUALIZER & ACTIVAR
- Transient Free capacitor group switching, using electronic switching elements
- Prevents damage to sensitive electronic equipment
- Saves energy
- Harmonic filtration
- Accurate power factor control, even in the presence of harmonics
- Dramatically increases the life expectancy of switching elements and capacitors
- Considerably lower temperature rise of capacitors and inductors due to unique scan feature
- Built-in three phase network analyzer, measuring all network parameters including harmonics
- Unique self testing and comprehensive reporting feature.

EQUALIZER (in addition to the above)
- Cycle by cycle reactive power compensation (total acquisition time of 5-20mSec)
- Prevents voltage drop and flickering
- Used for Real Time applications, such as spot welding and motor start-up
- Enhances capacity of local generator systems, such as diesel and windmill generators.
The ACTIVAR is a state of the art, electronic switching device designed to replace electromechanically switched equipment in power factor correction (PFC) systems.

Connection and disconnection of the capacitors to and from the network occurs at zero current crossing. This smooth connection avoids the transient effects typically created by electromechanically switched PFC systems. The total acquisition time (full compensation of reactive current) is only 3 to 4 seconds which is much faster than electromechanically switched PFC systems.

The electronic switches do not wear out or deteriorate during the switching process and the capacitors are not adversely affected by transients. These advantages contribute to a much longer life expectancy compared with electromechanically switched PFC systems.

The power factor is controlled very accurately by means of an advanced closed loop control & measuring unit, that takes into consideration all three phases and the effect of harmonics (1 through 63).

The scan feature, together with the unique reactor design, substantially reduces the temperature rise of the reactors and protects the cabinet from overheating.

There is an ongoing cumulative reduction of capacity in electromechanically switched PFC systems due to the effect of transients during connection and disconnection. This can be detrimental to detuned Electromechanically switched systems where the changes in ratio between the capacitors/reactors shift the resonance frequency, which may result in resonance. The ACTIVAR prevents these conditions.

The controller is a full measuring device, with an LCD display, which measures cycle by cycle all network and internal parameters.

Power IQ Measurement & Analysis Software (optional)
This software can display the system's status as well as the measurement results on numerous screens running under Windows.
The EQUALIZER

The Equalizer is a fast response system that is used to compensate any variation in reactive power within one cycle of the network.

Correct compensation using the Equalizer

The top graph demonstrates how the Equalizer compensates the reactive current of fast loads with a duration of 14 cycles. Typical acquisition time (full compensation of reactive current) is less than one cycle and the total current is substantially reduced.

Adverse effects of slower response systems

The bottom graph demonstrates incorrect compensation where the response time is 3 cycles for the connection of a single group and the acquisition time required to connect a total of 4 groups is 12 cycles. Due to the delay in compensation the current is partially reduced and due to the corresponding delay in disconnection of the capacitor groups there is residual current. The total effect of the compensation system on the current is negative since the average current of the load is increased instead of being reduced. This increases voltage flickering due to overcompensation.

Applications

Large and rapid variations in reactive power normally occur during spot welding operations and motor start-up. The Equalizer minimizes the negative effects of these loads, resulting in improved power quality and system capacity.

Spot Welding

Spot Welding loads fluctuate extremely rapidly and consume large amounts of reactive power. Resultant voltage sags tend to reduce welding quality and can impact welding productivity. In addition, these loads often create a high level of voltage flickering, which frequently exceed the recommended IEEE limits.

High-speed reactive compensation systems clearly offer the following benefits: Improved welding quality, increased process output and elimination of flickering. Significant capital investment is reduced by better utilization of the existing infrastructure.

The top and middle graphs demonstrate that the Equalizer prevents voltage drop and flickering; substantially reduces the current and compensates reactive energy.

The bottom graphs demonstrate welder output current (car industry). The optimal condition is a stable current within a range of 11,000amp. With the Equalizer, the current variations are +/- 200Amp and without the Equalizer the current variations are +/- 800Amp. A stable current significantly improves welding quality. Over-current can cause damage to the electrodes as well as to the material being welded. Undercurrent during welding operations deteriorates welding quality.

Central Compensation of Start-Up Current of Large Motors

Large squirrel case inductive motors, when connected directly on-line, consume high current during the start-up period (six times higher than steady state operation). However, if the network is weak, the high current leads to substantial voltage drops which interfere with other loads, reducing the initial torque and increasing start-up time.

The Equalizer tracks the reactive current, compensates it within one cycle, and provides the following features:

• Mains protection against voltage drops caused by high momentary consumption of reactive current
• Central starting of all loads, thus avoiding the use of individual starters required to protect the mains against voltage drop
• Direct connection of motor to mains, to obtain maximum torque during connection. This feature is unique to The Equalizer system, since starters of all types reduce the current going through the motor, thereby reducing the starting torque.
The CONTROLLER

The Controller is based on a Digital Signal Processor (DSP) and a VLSI component. It includes an LCD display, analog and digital circuitry, firing and optional communication cards.

POWER IQ Measurement & Analysis Software

This software displays the system's status as well as the measurement results on numerous screens running under Windows. All network parameters, including harmonics up to the 63rd can be recorded at preselected intervals. The duration of the recording is only limited to the size of the computer's hard disk. The software can be set to record data based on selected triggers of various network parameters, such as voltage sags and/or current spikes. The system records before and after the trigger event. The software has intranet and internet support.
CAPACITOR/REACTOR MODULE

The Equalizer includes custom designed, iron core reactors in series with the capacitors.

Iron Core Reactors

The iron core reactors are manufactured under tight tolerances. The reactors are constructed with a laminated low hysteresis losses iron core, precision controlled air gaps and copper windings, and have class H insulation (180°C).

Systems without tuned or detuned reactors are equipped with limiting reactors designed to limit the inrush current which may develop in the capacitors during power up. This avoids damage to the switching elements, fuses and capacitors.

The detuned reactors prevent resonance by shifting the capacitor/network resonance frequency below the first dominant harmonic (usually the 5th).

A tuned reactor design is available upon request (to absorb most of the 5th and 7th harmonics).

Capacitors

The capacitors are low loss (0.25W/kVAr) MKP type in cylindrical aluminium casing. The MKP capacitor is a metallized polypropylene film capacitor with self healing properties and an overpressure tear-off fuse.

Capacitor elements for 400V and 480V networks are rated 440V+10% and 525V+10% respectively to cope with harmonics and over-voltage. The capacitors are connected during current zero crossing, and operated in time sharing (SCAN mode), in order to reduce the effects of electrical or thermal overload and ensure an extended period of operating time (statistical life expectancy: over ten years).

SWITCHING MODULE

The switching module is comprised of solid state switching elements, which provide reliable, high speed, transient free operation. Each switching module switches up to three capacitor groups, using double phase electronic switches for each three phase capacitor group.
HARMONICS THEORY

Introduction
Utilities generate an almost perfect sinusoidal voltage. Harmonics are created by nonlinear loads such as variable speed drives, power rectifiers, inverters etc. which cause nonlinear voltage drop and change the sinusoidal nature of the voltage. The term "harmonic" refers to sinusoidal components at a frequency which is a multiple (2,3,4,5,...) of the fundamental.

The Solution
Resonance can occur on any frequency, however in most cases the current harmonic sources exist at the 5th, 7th, 11th, and 13th harmonic. The Equalizer's custom designed reactors, in series with the capacitors, prevent resonance by shifting the capacitor/network resonance frequency below the first dominant harmonic (usually the 5th).

The Problem
When the reactive energy is compensated using capacitors, there is a frequency at which the capacitors are in parallel resonance with the mains (high impedance).

Harmonic source frequencies (\(f_h\)) can be expressed as:
\[f_h = f_0 (P \times N \pm 1) \]
Where:
- \(f_0\)=Fundamental frequency
- \(P\)=Number of rectifier/switching elements
- \(N\)=Integer number 1, 2, 3, ...

Example: Six pulse rectifier (\(P=6\)),
\[f_h = 5, 7, 11, 13, 17, 19 \ldots \]

The Result
If the resonance frequency of the capacitors-mains occurs close to one of the harmonic sources, the current can circulate between the supply and the capacitors. This results in high voltage on the line and the capacitor current may exceed the rated current by more than double or triple its value.

Harmonics source frequencies (\(f_n\)) can be expressed as:
\[f_n = f_0 (P \times N \pm 1) \]
Where:
- \(f_0\)=Fundamental frequency
- \(P\)=Number of rectifier/switching elements
- \(N\)=Integer number 1, 2, 3, ...

Example: Six pulse rectifier (\(P=6\)),
\[f_n = 5, 7, 11, 13, 17, 19 \ldots \]
SYSTEM TYPES

- Detuned systems with tuning frequencies P5.7, P6, P7, P14 (up to 100 kVar per group at 400V/50Hz)
- Systems with inrush limiting reactors

Capacitors:

- SINGLE PHASE SYSTEM
- BALANCED SYSTEM
- UNBALANCED SYSTEM

Standard systems
- 100V-525V 50/60Hz

Non Standard systems
- 550V-1000V 50/60Hz

Standard balanced systems for 400V/50Hz and 480V/60Hz networks for:
- Systems with inrush limiting reactors
- Detuned systems with tuning frequencies P5.7, P6, P7, P14 (up to 100 kVar per group at 400V/50Hz)

EQ300/5-2-400.50-P7-XY ZZ

Extended features code:
- Blank: None
- M: MV/HV support
- P: Synchronized signal
- U: Unbalanced control support
- S: Single phase feeder

Communication:
- T: None
- RS 485 ELCOM Protocol
- 2:4:8:3:100B/LS/RTU Protocol

Measurement level:
- 1 through 4
 (4 = Most Advanced)

Tuning frequency:
- Standard systems:
- p0: inrush current limiting inductors
- Detuned systems:
- P5.7, P7, P14: for 50Hz network
- P6: for 60Hz network

Note: Other options upon request

Network frequency:
- 50: 50Hz
- 60: 60Hz

Network phase to phase voltage:
- Such as 220, 380, 400, 415, 440, 480, 525...

Switching sequence:
- 1: 1, 1, 1...
- 2: 1, 2, 2...
- 4: 1, 2, 4...

Number of steps:
- e.g. 3, 4, 5, 12

Total output:
- in kVAR at nominal voltage and frequency

System type:
- EQ: Equalizer
- AR: Activar
SYSTEM SPECIFICATIONS

- **Design:**
 Steel sheet cabinet

- **Enclosure Finish:**
 Epoxy powder coated, in grey (RAL 7032), internal parts: rust proof aluzinc

- **Rated Voltage:**
 400V/50Hz and 480V/60Hz
 Other voltage values are available upon request

- **Output Rating:**
 Refer to the table
 Other output ratings are available upon request

- **Capacitors:**
 Low loss, self-healing, IEC 831-1/2

- **Ambient Temperature:**
 +40°C max short time
 +35°C average in 24 hours
 +20°C annual average
 -10°C low limit

- **Protection class:** IP 20

- **Standards:**
 Electromagnetic EN50081-2, EN50082-2, EN55011,
 EN61000-4-2/3/4/5, ENV50204,
 ENV50141
 Safety Standards: EN61010-1, EN50439-1, UL508

Standard systems

Without Circuit Breaker

Single cabinet 80x60x210 cm (W x D x H), 3 groups
Dual door single cabinet 100x60x210 cm, 4 groups
Two cabinets 160x60x210 cm, 6 groups
Three cabinets 240x60x210 cm, 9 groups
Four cabinets 320x60x210 cm, 12 groups

Non-Standard Systems

With Circuit Breaker or Load Breaker with or without Busbar Connection

Single cabinet
Dual door single cabinet
Mechanical structure and dimensions of larger systems are available upon request.